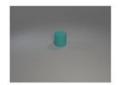
SSCR: Iterative Language-Based Image Editing via Self-Supervised Counterfactual Reasoning

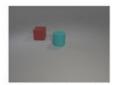
Tsu-Jui Fu

Xin Wang

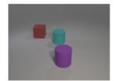
Scott Grafton

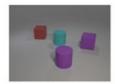
Miguel Eckstein


William Wang



LBIE


- Language-based image editing (LBIE)
 - o Iterative (step-by-step) editing


Add a cyan cylinder at the center

Add a red cube behind it on the left

Add a purple cylinder in front of it on the right and in front of the cyan cylinder

Add a purple cube behind it on the right and in front of the red cube on the right

Turn 1

Teller: top left corner big sun, orange part cut. right side far right medium apple tree. i see 4 apples

Turn 2

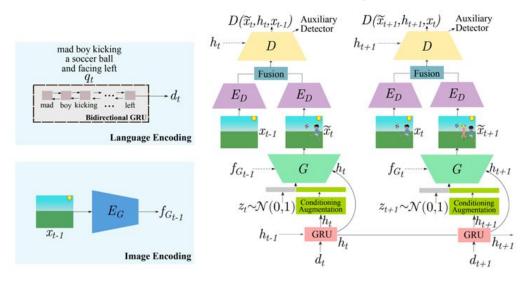
Teller: left side girl big size, running, facing right. head above horizon.

Turn 3

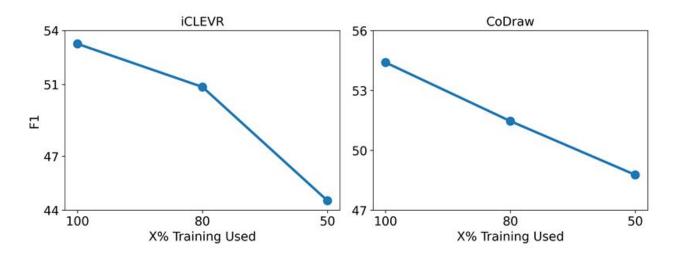
Teller: covering the tree, on the right side of the scene is a boy, kicking, facing left. head on green part. big size, black glasses. kicking ball. Drawer: ok

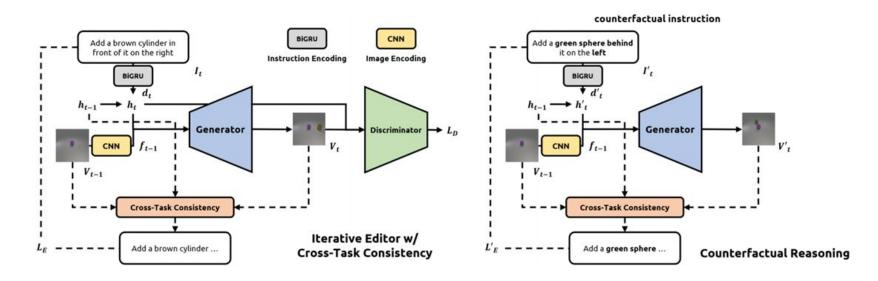
Turn 4

Teller: make tree a size bigger, move it up and left a bit. boys hand covers trunk.

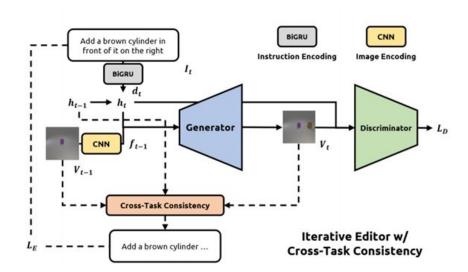

Drawer: ok

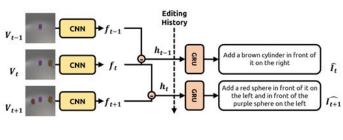
GeNeVA (Baseline)


- Conditional GAN
 - o G conditioned on h_t and f_{t-1}
 - \circ D as binary classifier and conditioned on h_t



GeNeVA (Baseline)


- Suffers from data scarcity
 - o D can only provide **binary** signal but **not explicit**
 - Not enough data for D to train G

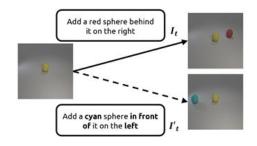


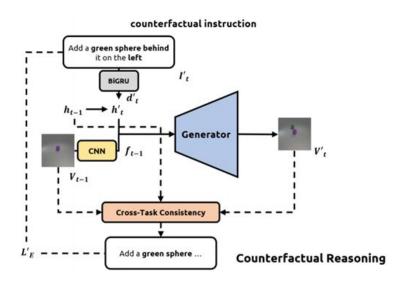
- Self-Supervised counterfactual reasoning (SSCR)
 - Cross-Task consistency (CTC) to provide token-level loss
 - Considers various counterfactual instructions

- Cross-Task consistency (CTC)
 - o *CTC*: describes the difference iteratively
 - L_F: token-level loss

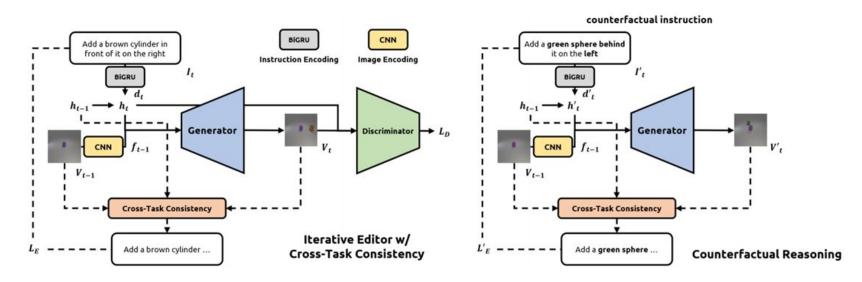
$$g_{0} = [f_{d}, h_{t-1}],$$

$$\hat{w}_{i}, g_{i} = GRU(w_{i-1}, g_{i-1}),$$


$$\hat{I}_{t} = \{\hat{w}_{1}, \hat{w}_{2}, ..., \hat{w}_{L}\},$$

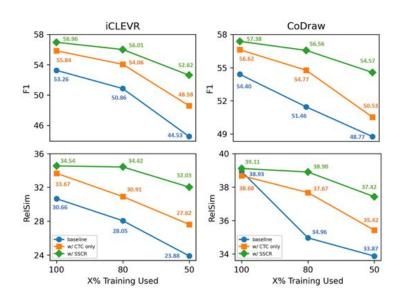

$$L_{E} = \sum_{i=1}^{L} CELoss(\hat{w}_{i}, w_{i})$$

- Counterfactual reasoning
 - Does intervention for counterfactual instruction I'
 - Applies CTC to train self-supervisedly by L'_E


Dataset	Token Type	Example	
i-CLEVR	color	blue, purple	
	object relation	cylinder, cube at the center, in front of	
CoDraw	size object relation	small, meidum sun, boy in the middle, on the lef	

replace token to do intervention

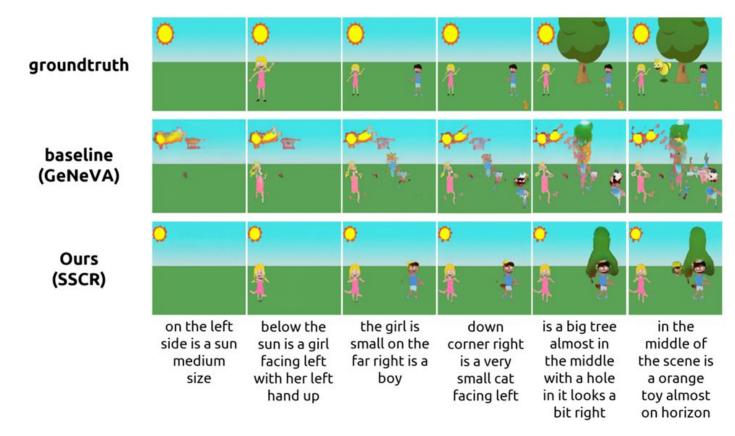
- Cross-Task consistency (CTC)
 - Provides explicit token-level loss (L_F)
 - \circ Trains counterfactual instructions $\bar{\text{self-supervisedly}}$ (L_F')


Experiments

- Evaluation Metrics
 - Precision / Recall / F1
 - Matches objects between prediction and groundtruth
 - RelSim
 - Considers both objects and related position

Experiments

- Ours vs Baseline under data scarcity
 - Baseline drops a lot
 - SSCR achieves similar performance when using only 50%



PPL & BLEU for CTC

X% Training Used	PPL	BLEU
100%	0.1073	50.236
80%	0.1295	48.873
50%	0.1163	48.763

CTC provides **meaningful training loss** for SSCR even under data scarcity

Visualization Examples

